A geometric version of the Robinson-Schensted correspondence for skew oscillating tableaux
نویسندگان
چکیده
منابع مشابه
Properties of the Robinson-schensted Correspondence for Oscillating and Skew Oscillating Tableaux
In this paper, we consider the Robinson-Schensted correspondence for oscillating tab-leaux and skew oscillating tableaux deened in 15] and 3]. First we give an analogue, for the oscillating tableaux, of the classical geometric construction of Viennot for standard tableaux ((16]). Then, we extend a construction of Sagan and Stanley ((10]), dealing with standard tableaux and skew tableaux, to ded...
متن کاملLa correspondance de Robinson-Schensted pour les tableaux oscillants gauches
We introduce an analog of the Robinson Schensted algorithm for skew oscillating tableaux which generalizes the well-known correspondence for standard tableaux. We show that this new algorithm enjoys some of the same properties as the original. In particular, it is still true that replacing a permutation by its inverse exchanges the two output tableaux. These facts permit us to derive a number o...
متن کاملEvacuation and a geometric construction for Fibonacci tableaux
Tableaux have long been used to study combinatorial properties of permutations and multiset permutations. Discovered independently by Robinson and Schensted and generalized by Knuth, the Robinson-Schensted correspondence has provided a fundamental tool for relating permutations to tableaux. In 1963, Schützenberger defined a process called evacuation on standard tableaux which gives a relationsh...
متن کاملSkew Domino Schensted Algorithm
Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...
متن کاملOscillating Tableaux , S p × S q - modules , and Robinson - Schensted - Knuth correspondence
The Robinson-Schensted-Knuth correspondence (RSK, see [8] and Corollary 2.5 below) is a bijection between pairs of semi-standard Young tableaux of the same shape and matrices with nonnegative integer entries with prescribed column and row sums. This correspondence plays an important role in the representation theory of the symmetric group and general linear groups, and in the theory of symmetri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 246 شماره
صفحات -
تاریخ انتشار 2002